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1 Symmetric Powers, Exterior Powers, and Determinants

1.1 Symmetric algebras and powers

Let A be a graded R-algebra.

Definition 1.1. A homogeneous ideal I of A is an ideal such that I =
⊕∞

k=0 grk(I),
where grk(I) = I ∩ grk(A).

Lemma 1.1. An ideal is homogeneous if and only if it has a set of generators, each of
which lies in some grk(A).

Example 1.1. Let I = (x3 − y2) ⊆ A = R[x, y], which is graded by degree. This is not
homogeneous, so A/I is not graded.

Let M be an R-module.

Definition 1.2. The tensor module is T (m) =
⊕∞

k=0M
⊗k.

Definition 1.3. The symmetric algebra is S(M) = T (M)/I, where I is the ideal
generated by m ⊗ n − n ⊗m for all m,n ∈ M . We call the graded pieces Symmk(M) =
grk(S(M)).

Example 1.2. S(R⊕n) = R[x1, . . . , xn], and Symmk(R⊕n) is the set of homogenerous
polynomials of degree k in x1, . . . , xn.

Symmk(M) satisfies a universal property.

Proposition 1.1. For any ψ : Mk → L which is R-multilinear and symmetric in its
variables, there is a unique Ψ such that

M × · · · ×M L

Symmk(M)

ψ

Ψ

If f : M → N is a morphism of R-modules, then Symmk(f) : Symmk(M)→ Symmk(N)
sends m1 ⊗ · · · ⊗mk 7→ ψ(m1)⊗ · · · ⊗ ψ(mk).
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1.2 Exterior algebras and powers

To get antisymmetric instead of symmetric we could try the ideal generated by the m ⊗
n+ n⊗m. If n = m, we get that 2m⊗m is in the ideal, but m⊗m is not necessarily in
the ideal. But we want ψ(m,m,m, . . . ) = 0. Instead take,

J = ({m⊗m : m ∈M}).

Then
J 3 (m+ n)⊗ (m+ n)−m⊗m− n⊗ n = m⊗ n+ n⊗m,

so we get all the relations we want.

Definition 1.4. The exterior algebra on an R-module M is
∧

(M) = T (M)/J =⊕∞
k=0

∧k(M).
∧k(M) is called the k-th extenior product of M .

The k-th exterior product of M is universal for R-bilinear, alternating mpas in k-
variables: ψ(. . . ,m,m, . . . ) = 0 for all m. We write the elements as

m ∧ · · · ∧mk ∈
k∧

(M).

Here are some properties:

1. m1 ∧m2 ∧m3 = −m1 ∧m3 ∧m2 = m3 ∧m1 ∧m2 = · · ·

2. · · · ∧m ∧m ∧ · · · = 0

A generalization of the first property is the following,

Lemma 1.2. mσ(1) ∧ · · · ∧mσ(k) = (sign(σ))m1 ∧ · · · ∧mk.∧k(R⊕n) is spanned by ei1 ∧ · · · ∧ eik , where 21, . . . , en is the standard basis of R⊕n,
and i1, . . . , ik ∈ {1, . . . , n}. In fact, this is spanned by ei1 ∧ · · · ∧ eik , where i1, . . . , ik are
distinct, or equivalently, i1 < · · · < ik.

Theorem 1.1.
∧k(R⊕n) is free on the generators ei1 ∧· · ·∧eik with 1 ≤ i1 < · · · < ik ≤ n.

In particular,

dim

(
k∧

(R⊕n)

)
=

{(
n
k

)
k ≤ n

0 k > n.

Proof. Let M = R⊕n. Fix i1 < · · · ik. It suffices to show the there exists some Φ :
∧kM →

R such that
Ψ(ei1 ∧ · · · ∧ eik) = 1, Ψ(ej1 ∧ · · · ∧ ejk) = 0
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if j1 < · · · < jk and (i1, . . . , ik) 6= (j1, . . . , jk). We want a map ψ : M ×· · ·×M → R. Send

ψ(ej1 , . . . , ejk) =


sign(σ) iσ(t) = jt ∀t
0 {i1, . . . , ik} 6= {j1, . . . , jk}
0 j1, . . . , jk not distinct

If it is alternating on a basis, it is alternating (exercise), so this is well-defined. Then we
get a dual basis of the correct size.

1.3 Determinants

Say M is free with basis e1, . . . , en, and T : M → M is R-linear. This induces
∧n(T ) :∧n(M)→

∧n(M); this is a mapR→ R, and it sends e1∧· · ·∧en 7→ 1. This is multiplication
by some element of R, which we call det(T ). It satisfies Te1∧· · ·∧Ten = det(T )e1∧· · ·∧en.

Definition 1.5. det(T ) is called the determinant of T .

Lemma 1.3. Tv1 ∧ · · · ∧ Tvn = det(T )v1 ∧ · · · ∧ vn.

Proof. Expand each vi as a linear combination of the e1 ∧ · · · ∧ en. Then the statement
applies to each Te1 ∧ · · · ∧ Ten, and we can do the steps in reverse.

Proposition 1.2. Let T,U : M →M . Then det(T ◦ U) = det(T ) det(U).

Proof.

det(TU)e1 ∧ · · · ∧ en = TUe1 ∧ · · · ∧ TUen
= det(T )Ue1 ∧ · · · ∧ Uen
= det(T ) det(U)e1 ∧ · · · ∧ en.

Corollary 1.1. If T : M →M is an isomorphism, det(T ) ∈ R×.

Proof. det(T ) det(T )−1 = 1 by the proposition.
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