Math 210B Lecture 14 Notes

Daniel Raban

February 8, 2019

1 Symmetric Powers, Exterior Powers, and Determinants

1.1 Symmetric algebras and powers

Let A be a graded R-algebra.

Definition 1.1. A homogeneous ideal I of A is an ideal such that $I = \bigoplus_{k=0}^{\infty} \operatorname{gr}^{k}(I)$, where $\operatorname{gr}^{k}(I) = I \cap \operatorname{gr}^{k}(A)$.

Lemma 1.1. An ideal is homogeneous if and only if it has a set of generators, each of which lies in some $gr^k(A)$.

Example 1.1. Let $I = (x^3 - y^2) \subseteq A = R[x, y]$, which is graded by degree. This is not homogeneous, so A/I is not graded.

Let M be an R-module.

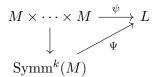
Definition 1.2. The tensor module is $T(m) = \bigoplus_{k=0}^{\infty} M^{\otimes k}$.

Definition 1.3. The symmetric algebra is S(M) = T(M)/I, where *I* is the ideal generated by $m \otimes n - n \otimes m$ for all $m, n \in M$. We call the graded pieces Symm^k(M) = $\operatorname{gr}^k(S(M))$.

Example 1.2. $S(R^{\oplus n}) = R[x_1, \ldots, x_n]$, and $\text{Symm}^k(R^{\oplus n})$ is the set of homogenerous polynomials of degree k in x_1, \ldots, x_n .

 $\operatorname{Symm}^k(M)$ satisfies a universal property.

Proposition 1.1. For any $\psi : M^k \to L$ which is *R*-multilinear and symmetric in its variables, there is a unique Ψ such that



If $f: M \to N$ is a morphism of *R*-modules, then $\operatorname{Symm}^k(f) : \operatorname{Symm}^k(M) \to \operatorname{Symm}^k(N)$ sends $m_1 \otimes \cdots \otimes m_k \mapsto \psi(m_1) \otimes \cdots \otimes \psi(m_k)$.

1.2 Exterior algebras and powers

To get antisymmetric instead of symmetric we could try the ideal generated by the $m \otimes n + n \otimes m$. If n = m, we get that $2m \otimes m$ is in the ideal, but $m \otimes m$ is not necessarily in the ideal. But we want $\psi(m, m, m, ...) = 0$. Instead take,

$$J = (\{m \otimes m : m \in M\}).$$

Then

$$J \ni (m+n) \otimes (m+n) - m \otimes m - n \otimes n = m \otimes n + n \otimes m,$$

so we get all the relations we want.

Definition 1.4. The exterior algebra on an *R*-module *M* is $\bigwedge(M) = T(M)/J = \bigoplus_{k=0}^{\infty} \bigwedge^{k}(M)$. $\bigwedge^{k}(M)$ is called the *k*-th extension product of *M*.

The k-th exterior product of M is universal for R-bilinear, alternating mpas in k-variables: $\psi(\ldots, m, m, \ldots) = 0$ for all m. We write the elements as

$$m \wedge \dots \wedge m_k \in \bigwedge^k (M).$$

Here are some properties:

- 1. $m_1 \wedge m_2 \wedge m_3 = -m_1 \wedge m_3 \wedge m_2 = m_3 \wedge m_1 \wedge m_2 = \cdots$
- 2. $\cdots \wedge m \wedge m \wedge \cdots = 0$

A generalization of the first property is the following,

Lemma 1.2. $m_{\sigma(1)} \wedge \cdots \wedge m_{\sigma(k)} = (\operatorname{sign}(\sigma))m_1 \wedge \cdots \wedge m_k$.

 $\bigwedge^k(R^{\oplus n})$ is spanned by $e_{i_1} \wedge \cdots \wedge e_{i_k}$, where $2_1, \ldots, e_n$ is the standard basis of $R^{\oplus n}$, and $i_1, \ldots, i_k \in \{1, \ldots, n\}$. In fact, this is spanned by $e_{i_1} \wedge \cdots \wedge e_{i_k}$, where i_1, \ldots, i_k are distinct, or equivalently, $i_1 < \cdots < i_k$.

Theorem 1.1. $\bigwedge^k (R^{\oplus n})$ is free on the generators $e_{i_1} \wedge \cdots \wedge e_{i_k}$ with $1 \leq i_1 < \cdots < i_k \leq n$. In particular,

$$\dim\left(\bigwedge^k(R^{\oplus n})\right) = \begin{cases} \binom{n}{k} & k \le n\\ 0 & k > n. \end{cases}$$

Proof. Let $M = R^{\oplus n}$. Fix $i_1 < \cdots i_k$. It suffices to show the there exists some $\Phi : \bigwedge^k M \to R$ such that

 $\Psi(e_{i_1} \wedge \dots \wedge e_{i_k}) = 1, \qquad \Psi(e_{j_1} \wedge \dots \wedge e_{j_k}) = 0$

if $j_1 < \cdots < j_k$ and $(i_1, \ldots, i_k) \neq (j_1, \ldots, j_k)$. We want a map $\psi : M \times \cdots \times M \to R$. Send

$$\psi(e_{j_1},\ldots,e_{j_k}) = \begin{cases} \operatorname{sign}(\sigma) & i_{\sigma(t)} = j_t \ \forall t \\ 0 & \{i_1,\ldots,i_k\} \neq \{j_1,\ldots,j_k\} \\ 0 & j_1,\ldots,j_k \text{ not distinct} \end{cases}$$

If it is alternating on a basis, it is alternating (exercise), so this is well-defined. Then we get a dual basis of the correct size. $\hfill \Box$

1.3 Determinants

Say M is free with basis e_1, \ldots, e_n , and $T: M \to M$ is R-linear. This induces $\bigwedge^n(T) :$ $\bigwedge^n(M) \to \bigwedge^n(M)$; this is a map $R \to R$, and it sends $e_1 \land \cdots \land e_n \mapsto 1$. This is multiplication by some element of R, which we call det(T). It satisfies $Te_1 \land \cdots \land Te_n = \det(T)e_1 \land \cdots \land e_n$.

Definition 1.5. det(T) is called the **determinant** of T.

Lemma 1.3. $Tv_1 \wedge \cdots \wedge Tv_n = \det(T)v_1 \wedge \cdots \wedge v_n$.

Proof. Expand each v_i as a linear combination of the $e_1 \wedge \cdots \wedge e_n$. Then the statement applies to each $Te_1 \wedge \cdots \wedge Te_n$, and we can do the steps in reverse.

Proposition 1.2. Let $T, U : M \to M$. Then $det(T \circ U) = det(T) det(U)$.

Proof.

$$det(TU)e_1 \wedge \dots \wedge e_n = TUe_1 \wedge \dots \wedge TUe_n$$

= det(T)Ue_1 \wedge \dots \wedge Ue_n
= det(T) det(U)e_1 \wedge \dots \wedge e_n. \square

Corollary 1.1. If $T: M \to M$ is an isomorphism, $det(T) \in R^{\times}$.

Proof. $det(T) det(T)^{-1} = 1$ by the proposition.